Modernized Biomass Energy in China: Jilin

Project Overview

Dr. Pat DeLaquil
Chief Technical Advisor

Contents

- 1. Background and Organization
- 2. Goal & Objectives
- 3. Biomass Gasification
- 4. Combined Heat & Power
- 5. Preliminary Economics

1. Background and Organization

- Project identified by China Council for International Cooperation on Environment and Development
- Project promoted by Robert Williams at Princeton University Center for Energy and Environmental Studies
- **Project co-funded by UNDP (with funds from the UN Foundation) and the Jilin Provincial Government**

Organization Chart

Project Approach

Jilin Biomass Project - 4/20/99

2. Project Goal & Objectives

Long-term Goal:

Promote widespread use of gasified biomass for for combined heat and power (CHP) generation in China and other developing countries

Project Objectives

- Improve local environmental conditions by reducing indoor air pollution
- Enhance living standards and increase options for education, recreation and income generation through improved heating, cooking and illumination services
- **Establish a local market for recovery and utilization of agricultural residues**
- **Demonstrate a distributed means of electricity generation** based on a renewable resource
- **Familiarize Chinese experts and officials with the technical, economic and organizational aspects of CHP**
- Identify policies and regulations to remove or mitigate economic and institutional barriers to project replication

Improve Local Environmental Conditions

- # High indoor air pollution from traditional heating & cooking
- Respiratory disease is leading cause of death in China
- Field burning of excess residues causes severe outdoor air pollution
- © Coal briquettes do not reduce indoor pollution and increase the problem of excess residues
- Residue quantities are sufficient for cooking, heating and electricity needs

Enhance Living Standards and Clean Development Options

Project converts residue wastes into a valuable commodity and generates revenue to pay villagers for collecting and delivering residues

Improved heating and cooking methods free time for education, income generation and recreation

Demonstrate Distributed Generation Based on a Renewable Resource

- Distributed electricity generation provides important benefits to the utility
 - Greater line utilization
 - Reduced transformer and other equipment upgrades
 - Improved voltage stability
- Use of renewable resources displaces coal from conventional power plants
- Revenue from electricity sales to the grid is critical to the project economics

Familiarize Chinese Experts and Officials With CH P Technology

- Multiple training workshops
 - Technical aspects gasification and CHP
 - Institutional issues of regulation, taxation and consumer awareness
 - Site selection, system design, operation and maintenance
 - Rural energy service company management and administration
- Market assessment & business plan development
- Dissemination of project results inside and outside China

Identify Policies and Regulations to Support Project Replication

- Village & Township Enterprise System
 - Encourages local entrepreneurs
- Renewable Portfolio Standard
 - Requires utility to supply a minimum amount of energy from renewable sources
 - Supports utility purchase of surplus electricity from Village Biomass Energy Projects
- Rural Energy Concessions
 - Allows local entrepreneurs to provide services that utilities can not

Benefits to China

- Use of half the 376 million tons of residues generated per year can:
 - Provide clean cooking gas for 230 million people (27% of rural population)
 - Generate 270 TWh of electricity (30% of all coal generation in 1997)
 - Supply rural heating needs in colder regions
- Being a model for other developing countries will:
 - Provide significant opportunities for exporting equipment and expertise
 - Increase Chinese influence in the developing world

3. Biomass Gasification

Gasification is One of Three Types of Thermal Processes:

Combustion: Biomass + Unlimited O₂

=> Heat + CO₂ + H₂O + Ash

 $\ref{Pyrolysis:}$ Biomass + Heat (No O_2)

=> Charcoal + Oils + Tars + Gases

=> Hot Producer Gas (H₂, CO, CH₄, CO₂, N₂)

Volatile Tars + Ash

Closed-Top Gasifiers Use High-Density Biomass & Produce Low-Tar Gas

Open-Top Gasifiers Use Low-Density Biomass, but Produce Higher-Tar Gas

Jilin Biomass Project - 4/20/99

Producer Gas Characteristics

- **Typical Composition**
 - **20%-CO**, 15%-H₂, 10%-CO₂, 2%-CH₄, 53%-N₂
- **Energy Content**
 - **№** 5000 KJ/Nm³
- **Contaminants**
 - Particulates, tars, water vapor, alkalis
- Safety Issues
 - CO toxicity
 - Phenols from gas clean-up

4. Biomass Gasification CHP System

Jilin Biomass Project - 4/20/99

Preliminary Criteria for Biomass Gasification System

- Must be proven on low-density agricultural residues
- Must generates low-tar "producer" gas or have effective gas cleaning
- **Must have commercial systems in operation generating electricity**
- **Must have safety features to ensure worker protection**
- Preferably consist of modular equipment for easy installation, operation and maintenance

Gas Cleanup Options

Cyclones

Remove particulates > 10 microns

Dry Filters

- Hot gas filters are too expensive for small systems
- Cold filters require a heat exchanger to cool the gas
- Remove particulates, but are clogged by tars & moisture
- Require on-line cleaning mechanisms

Water Scrubbers

- Effective at removing particulates as small as 1-2 microns
- Cool gas and remove some tars and alkalis
- Require scrubber water containment & treatment

Gas Storage Options

- Floating Steel Vessel
- **Expandable Plastic Vessel**

Primary Criteria are

- Cost and
- **Worker Safety**

Electricity Generation Options

Dual Fuel Diesel Gensets

- Reasonably good experience base
- Insignificant engine derating (10 to 20%)
- Diesel fuel cost is significant

Spark Engines

- Smaller experience base
- Significant engine derating (40 to 60%)
- No liquid fuel cost

Stirling Engines

- Close to being commercially available
- No derating or liquid fuel requirement

Microturbines

- Under development for producer gas
- No derating or liquid fuel requirement

District Heat Options

- **© Central Hot Water System**
 - Utilizes waste heat from the engine
 - Maximizes electric output from the system
 - Requires significant capital investment
- **Producer Gas Supply**
 - Household hot water heat
 - Household hot air furnace
 - Heater for existing kangs

Basic System Design Issues

- **Village Energy Requirements**
 - Cooking
 - Electricity
 - Heating
- Daily & Seasonal Load Distributions
 - Gasifier size
 - Gas storage requirement
 - Heating storage requirement
- **Genset Size & Capacity Utilization**
 - Village requirement
 - Surplus sales to grid
- **Modeling Required to Optimize System Design**

5. Preliminary System Economics*

- Preliminary economics run for 100 household village using the district hot water heat option
- © Cooking gas is priced slightly below LPG price (\$6/GJ)
- **Heat is priced below the cost of cooking gas (\$5/GJ)**
- Corn stalk is purchased at \$6/tonne
- **Electricity** is sold to grid at 5¢/kWh
- Villagers continue to purchase electricity from grid
- The plant employs three workers per shift
- **Return on investment is attractive (10 to 14%)**

^{*} An Assessment of Biomass-Powered Microturbines and the Potential for Application in Rural China, Paul M. Henderick, PU/CEES Report No. 322, January 2000.

Preliminary Energy Flows for a 100 Household Village

A 100 Household Village Example Annual Energy and Revenue Flows

CHP System Benefits

